首页> 外文OA文献 >Structure-Preserving Discretization of Incompressible Fluids
【2h】

Structure-Preserving Discretization of Incompressible Fluids

机译:不可压缩流体的结构保持离散化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The geometric nature of Euler fluids has been clearly identified andextensively studied over the years, culminating with Lagrangian and Hamiltoniandescriptions of fluid dynamics where the configuration space is defined as thevolume-preserving diffeomorphisms, and Kelvin's circulation theorem is viewedas a consequence of Noether's theorem associated with the particle relabelingsymmetry of fluid mechanics. However computational approaches to fluidmechanics have been largely derived from a numerical-analytic point of view,and are rarely designed with structure preservation in mind, and often sufferfrom spurious numerical artifacts such as energy and circulation drift. Incontrast, this paper geometrically derives discrete equations of motion forfluid dynamics from first principles in a purely Eulerian form. Our approachapproximates the group of volume-preserving diffeomorphisms using a finitedimensional Lie group, and associated discrete Euler equations are derived froma variational principle with non-holonomic constraints. The resulting discreteequations of motion yield a structure-preserving time integrator with goodlong-term energy behavior and for which an exact discrete Kelvin's circulationtheorem holds.
机译:多年来,欧拉流体的几何性质已被清楚地识别并进行了广泛的研究,最后以拉格朗日和汉密尔顿对流体动力学的描述为最终结果,其中构型空间被定义为体积守恒的微分形,开尔文的循环定理被认为是Noether定理与定理相关联的结果流体力学的粒子重新标记对称性然而,流体力学的计算方法主要是从数值分析的观点出发的,很少在考虑结构保留的情况下进行设计,并且经常遭受虚假的数值假象,例如能量和循环漂移。相反,本文从纯欧拉形式的第一原理以几何学原理导出了流体动力学的离散运动方程。我们的方法使用有限维李群来近似保留体积的微分群,并且相关联的离散欧拉方程是从具有非完整约束的变分原理导出的。所产生的运动离散方程产生了一个结构良好的时间积分器,该结构具有良好的长期能量行为,并为此保留了一个精确的离散开尔文循环定理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号